Immobilizing Arsenic in Contaminated Soil Using Humic Mineral Concentrates

Alexander I.Shulgin¹ and D. Joseph Hagerty², F. ASCE, PE

- 1. Research Professor, Chemical Engineering Dept., U. Louisville, Louisville, KY 40292 a.shulgin@insightbb.com
- Professor, Civil & Environmental Engineering Dept., U. Louisville, Louisville, KY 40292 hagerty@louisville.edu

ABSTRACT

Immobilization of heavy metals, especially arsenic, may involve both cationic and anionic forms. Arsenic may occur as both cations and anions. Humic mineral concentrates (HMC- Organic Biopolymers), including chemically active functional groups, can form complexes to immobilize both cationic and anionic forms.

The efficiency of HMC in binding both cations and anions of heavy metals was demonstrated in labscale tests. Then, field tests were carried out on a former industrial disposal site destined for construction of commercial/residential structures. Field test results showed efficiencies of immobilization for zinc of 60%, cadmium of 66%, nickel of 72%, lead of 73%, and strontium of 87%. Arsenic immobilization efficiency was 85%.

The source of arsenic cations was AsCl3 and the source of the anion form was NaAsO2. Both were triple valent ions. Arsenic content in soil samples ranged from 2 mg/kg up to 200 mg/kg. Tests showed that the average efficiency of cationic arsenic immobilization was 90%, for an initial arsenic concentration in soil of 2 mg/kg and 82% for an initial arsenic concentration of 20 mg/kg. Average efficiency of immobilization of anionic arsenic was 85% for an initial arsenic soil concentration of 2 mg/kg and 76% for an initial arsenic concentration of 20 mg/kg. HMC worked well in these trials.

INTRODUCTION

Increased concentrations of arsenic in soils are caused by emissions from industrial activities (metallurgical, power, chemical, etc.), by leaching from landfills or burial sites for a variety of industrial wastes (including processing residues and mineral enrichment wastes), and also by application of mineral fertilizers and pesticides.

Migration of arsenic and other heavy metals in groundwater and into soils is closely connected to alkalinity-acidity and redox conditions, but also is affected significantly by the presence of organic substances in soil. In general, the major sink where polluting substances collect is the sequence of uppermost soil horizons enhanced by humus. These layers constitute a biogeochemical barrier against the migration of chemical elements and substances. Organic compounds in humus bind, in order of priority, Pb, Zn, Cd, Ba, Cr, Cu, Hg and other heavy metals; particularly effective are humic mineral concentrates/natural organic biopolymers.

In contrast to the atmosphere in constant movement, and the dynamic aquatic environment, soil is immobile, and therefore is most vulnerable to pollution. On the one hand, soils lie on pathways for migrating ecotoxicants, and on the other hand, soils work as traps or pollutant accumulators. Resultant concentrations of contaminants may be harmful and even dangerous for people.

The ecological danger inherent in polluted soils is determined by the exposure of species in a given situation (potentially affected population, severity of exposure, etc.), but soil can serve as a secondary source of pollution of air by microscopic particles of arsenic or arsenic contaminated soil, and of water when arsenic is leached from the soil into receiving waters. Epidemiological risks may be increased by suppression of native soil microorganisms through contact with chemical pollutants, while pathogens carried to a site may survive under the same conditions.

HMC-ORGANIC BIOPLOYMERS AND ARSENIC - A FEASIBILITY STUDY

HMC- Organic Biopolymers interact with heavy metals and arsenic in a variety of ways, including: ionic exchange with metals cations; formation of complex heteropolar salts with metal cations; and formation of complexes with anions, including anionic forms of metals. Prior research (Shulgin 2003) demonstrated that sulfate and nitrate anions play a significant role in formation of complexes between metals and HMC. As a result of such interactions, the concentrations of available metals and named anions are reduced significantly. Arsenic may occur in both cation and anion forms and the investigation of the interactions of arsenic in both forms with HMC's has great scientific and practical interest.

Examples of practical applications of such interaction include the successful development of an effective technology for remediation of soils contaminated with arsenic, and detoxification of arsenical waste using organic biopolymer materials (Shulgin et al. 1998; Shulgin et al. 2004). This technology is based on application of organic biopolymer in the form of a Humic Mineral Concentrate (HMC) (Patent 2000). Laboratory tests were performed for preliminary assessment of the interaction of HMC with both cationic and anionic arsenic forms in samples of podsolic, sandy soils from an industrial site.

In the tests, the soil samples were contaminated by anionic arsenic in NaAsO₂ and cationic arsenic in AsCl₃. Standard solutions of these compounds were introduced into soil samples in doses of 2 mg / kg and 20 mg / kg. Anionic arsenic was added also at a concentration of 200 mg / kg. HMC was introduced into the polluted soil samples one week after the samples had been contaminated with arsenic. HMC dosages were 0.5 % and 2 % (dry weight to soil sample dry weight). Determination of the arsenic content in the soil samples was done by nuclear absorption spectrophotometry using a Perkin Elmer model 603 spectrophotometer after the arsenic was leached from the soil samples using an ammonium acetate solution with pH of 4.8. This procedure allows extraction of the mobile (water soluble) forms of the arsenic.

Using the same technique, the arsenic level in untreated soil, in a "control sample" was determined to be 0.6 mg/kg. Results for mobile forms of arsenic found in these tests are shown in Table No.1.

Sample	Initial As level (mg/kg)	Arsenic chemical formula	Extractable As content (mg/kg)
Control			0.6
1	2	NaAsO ₂ [anion]	1.93
2	2	NaAsO ₂ [anion]	1.99
3	2	AsCl ₃ [cation]	1.85
4	2	AsCl ₃ [cation]	1.80
5	20	NaAsO ₂ [anion]	18.98
6	20	NaAsO ₂ [anion]	19.23
7	20	AsCl ₃ [cation]	17.90
8	20	AsCl ₃ [cation]	17.65
9	200	NaAsO ₂ [anion]	190.65
10	200	NaAsO ₂ [anion]	190.23

TABLE No.1. Concentration of As Mobile Forms In Soil Samples Before Treatment

Table No.1 shows that arsenic anion forms were adsorbed by soil less strongly than were arsenic cation forms. Most of the added arsenic in both forms was mobile and available for extraction. The results of similar extraction tests on mobile forms of arsenic after treatment with HMC are presented in Table No.2.

TABLE No. 2. Immobilization of Mobile As Forms Image: Minimum left

Test	Arsenic initial level, (mg/kg)	Arsenic chemical formula	Potentially mobile As content in the soil (mg/kg)		Efficiency of fixation (%)
			Before treat ment	After treatment	
1	2	NaAsO ₂	1.93	0.29	85.0
2	2	NaAsO ₂	1.99	0.27	86.4
3	2	AsCl ₃	1.85	0.19	89.7
4	2	AsCl ₃	1.8	0.16	91.1
5	20	NaAsO ₂	18.98	4.55	76.0
6	20	NaAsO ₂	19.23	4.26	77.8
7	20	AsCl ₃	17.9	3.12	82.6
8	20	AsCl ₃	17.65	3.01	82.9
9	200	NaAsO ₂	190.65	42.55	77.7
10	200	NaAsO ₂	190.23	41.36	78.3

by Humic Mineral Concentrate

The second set of tests showed that the average efficiency of cationic arsenic immobilization was 90% for an initial arsenic concentration in soil of 2 mg/kg and 82% for an initial arsenic concentration of 20 mg/kg. Average efficiency of immobilization of anionic arsenic was 85% for an initial arsenic soil concentration of 2 mg/kg and 76% for an initial arsenic soil concentration of 20 mg/kg. Average efficiency of immobilization of anionic arsenic was virtually identical to cationic As immobilization for an initial arsenic soil concentration of 200 mg/kg. HMC worked well in these trials, binding cationic arsenic better than anionic arsenic.

One of the main purposes of arsenic immobilization in soil is a reduction or elimination of its toxicity. Immobilized arsenic may be less available for uptake by the root systems of some plants and even unavailable to other plants. To investigate this aspect of the remediation, tests on oats were done to study the impact of arsenic on seed germination and seedling development and to determine arsenic content in the plants. HMC dosage was 0.5 % and 2% for each of two groups of soil samples. Results are presented in Table No.3.

Sample	Arsenic initial level (mg/kg)	Arsenic chemical formula	HMC dose (%)	Seed germination (%)
Control	0.6			91.0
1	2	NaAsO ₂	0.50	95.0
2	2	NaAsO ₂	2.00	96.0
3	2	AsCl ₃	0.50	98.0
4	2	AsCl ₃	2.00	97.0
5	20	NaAsO ₂	0.50	91.0
6	20	NaAsO ₂	2.00	90.0
7	20	AsCl ₃	0.50	97.0
8	20	AsCl ₃	2.00	96.0
9	200	NaAsO ₂	0.50	86.0
10	200	NaAsO ₂	2.00	85.0

TABLE No.3. Impact of As on Seed GerminationModified by HMC Treatment

Under low arsenic levels in the soil (2-20 mg/kg), HMC treated soil samples showed more seed germination than did even the uncontaminated soil (control). A trend was noted, that anionic arsenic is more toxic than cationic arsenic for seeds. For example, for an arsenic initial level of 20 mg/kg, the difference in seed germination between samples containing anionic As and those containing cationic As was 6%. In contrast, no difference was noted in impact between HMC doses of 0.5 % and 2%.

Table 4 contains data on arsenic content in dried oat plants grown on the arsenic-contaminated soil samples treated by HMC. The tests showed that arsenic content in the plants is 1-2% for an initial extractable arsenic concentration of 2-20 mg/kg and 4.8 to 4.98% for an initial concentration of 200 mg/kg. No plant distress or death was detected during the tests.

Test	Initial Arsenic level (mg/kg)	Arsenic chemical formula	Extractable As, after treatment (mg/kg)	HMC dose (%)	As content $(mg/g)^1$	As in dry plants (%) ²
1	2	NaAsO ₂	0.29	0.50	$5.8 \text{ x} 10^{-3}$	2.00
2	2	NaAsO ₂	0.27	2.00	$5.88 \text{ x} 10^{-3}$	2.17
3	2	AsCl ₃	0.19	0.50	$3.55 \text{ x}10^{-3}$	1.87
4	2	AsCl ₃	0.16	2.00	$3.42 \text{ x} 10^{-3}$	2.14
5	20	NaAsO ₂	4.55	0.50	1.24 x10 ⁻¹	2.72
6	20	NaAsO ₂	4.26	2.00	$1.21 \text{ x} 10^{-1}$	2.84
7	20	AsCl ₃	3.12	0.50	8.42 x10 ⁻²	2.70
8	20	AsCl ₃	3.01	2.00	8.28 x10 ⁻²	2.75
9	200	NaAsO ₂	42.55	0.50	2.12	4.98
10	200	NaAsO ₂	41.36	2.00	1.98	4.80

Table No. 4. Arsenic Content in Oat Plants

1. Measured on basis of dry plant weight.

2. Measured as percent of extractable arsenic in the soil.

FIELD STUDIES

All the tests listed above showed that there is no significant difference between anionic and cationic arsenic in terms of plant uptake; for practical purposes, the As form does not matter. On the basis of these tests, an area of 2 hectares of soil contaminated by heavy metals and arsenic was treated with HMC. Mobile forms of heavy metals and arsenic were isolated from the soil before and after HMC treatment, using an ammonium acetate solution with pH of 4.8. Pollutant concentrations were determined using the aforementioned atomic-absorption method. Results are presented in Table No. 5, on the next page.

The results obtained show that significant fractions of the mobile forms of heavy metals and arsenic were immobilized. Humic Mineral Concentrate showed especially high efficiency in binding strontium (reduction of 7.9 times, or to 12.7 percent of initial concentration), chromium (4.4 times, or to 22.7 percent of initial concentration), lead (3.7 times, or to 26.7 percent of initial concentration), nickel (3.6 times, or to 28 percent of initial concentration) and arsenic (6.8 times, or to 14.7 percent of initial concentration).

CONCLUSIONS

It is possible to draw conclusions based on the tests carried out.

1. Humic acids in the form of Humic Mineral Concentrates work well for immobilization of both anionic and cationic arsenic. Mechanisms of both ion exchange and formation of complexes operate.

2. The efficiency of arsenic immobilization in the lab scale tests was from 76% up to 91% depending on the initial soil contamination level. The efficiency of

Element	Avg. Conc.	Avg. Conc.	Efficiency, %
	Before treatment	After treatment	
	(mg/kg)	(mg/kg)	
Zn	25.0	10.1	60
Mn	7.7	6.24	19
Sr	45.6	5.78	87
Ni	9.6	2.7	72
Cr	23.7	5.38	77
Cu	4.3	2.46	43
Pb	34.8	9.32	73
As	12	1.76	85
V	8.4	6.18	26
Sb	0.7	0.27	62
Sn	12.2	5.28	57
Cd	0.99	0.34	66
Со	9.3	3.66	61

Table No.5. Heavy Metal/As Immobilizationwith Humic Mineral Concentrate

arsenic immobilization in the field scale was 85%. Thus, both the lab scale tests and the practical field scale work showed the same result.

3. Through arsenic immobilization, it is possible to reduce the toxic impact of arsenic on seeds and plants. Seed germination was increased and arsenic content in the plants was reduced by treatment with HMC.

4. Typical cationic forms of heavy metals (except chromium, which may exist in both cationic and anionic forms) are bound by HMC differently, but immobilization efficiency looks acceptable for practical application of HMC for contaminated soil detoxification and remediation.

REFERENCES

- Shulgin, A. I. (2003). "A study of heavy metal interaction with humic acids in a form of humic mineral concentrate." *Humic Substances in the Biosphere*. Proceedings of the II International Conference in Moscow, 168-70.
- Shulgin, A. I., Shapovalov, A.A. and Putsikin, Y.G. (1998). "Activated humic acids and problems of chemistry of the environment." *Humic Substance Downunder: Understanding and Managing Organic Matter in Soils, Sediments and Waters*. Proceedings, 9th International Meeting of the International Humic Substances Society, Adelaide, Australia, 212.

Shulgin, A. I., Nunes, R.A., Brocchi, E.A. and Faller, M.C. (2004).
"Humic substance applied to detoxify solid waste from INGA Brazilian Zinc Company." *Humic Substances and the Soil and Water Environment*. Proceedings, XII International Meeting of International Humic Substances Society, July 25-30, São Pedro, Brazil. Editors: L. Martin-Neto, D.M.B.P. Milori and W.T.L. da Silva, 474-6.

A Method (and system) for Obtaining Humic-Mineral Concentrates, Patent Ru, No. 2175651, 2000.